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ON INTEGRAL INEQUALITIES OF THE THEORY OF ELASTICO-PLASTIC BODY* 

I. A. BEPEZHNOI and D. D. IVLEV 

Integral inequalities which lead to the Onsager principle of maximum dissipation 
rate are determined, and the limits imposed by these on the mechanical behavior of 
material are established. 

The relation between integral inequalities of the theory of plasticity which lead to 
the Mises principle were considered in /l/. The equivalence of the Drucker /2/ and Hill /3/ 
inequalities, as well as that of Il'iushin /4/ and the one derived in /l/, is demonstrated 
below. 

The problem of constructing the theory of plasticity on the basis of the Onsager princi- 
ple of maximum dissipation rate was considered, for instance, in /5,6/. 

1. Let us consider a work hardening elastico-plastic body. We denote by e and e the 
tensors of actual stresses and strains, and assume that 

e = ee + er’ (1.1) 

where ee and e" are, respectively, the elastic and plastic components of strain. We assume 
that the elastic properties of the material are independent of its plastic properties. 

Let us consider loading cycles that are closed with respect to stresses and strains. 
Let BAA,AB (Fig.1) be the cycle closed with respect to stresses. Let BAB run through 
the region of elastic deformations, the material reach its elasticity limit at point A, and 
vector u emerge at the loading surface. Plastic deformations obtain on the loading segment 

AA, along which we denote the stress increments by &J and the corresponding strain incre- 
ments by &". 

In the stress space the open cycle BAA,AC (Fig.2) corresponds to the stress space to 
the cycle closed with respect to actual deformations. Total strains at points B and c are 
by definition equal. We denote by subscripts e and u the integrals over the cycle closed 
with respect to strains and stresses, respectively. By definition 

$Cde=O, (‘=const 
e 

(1.2) 

Since along segment AA, (Fig.2) the actual strains 6e" increase, hence along segment 
BC the increment Ae" of elastic strains compensating 6eP must appear, i.e. 

&I' + Ae' z U, A& :Y -_6&' 

The stress increment Au = cc - ofi corresponds (Fig.2) to the increment Ae'. It is 
obvious that generally 6u# Au. 

C 

Fig.1 Fig.2 Fig.3 

The postulates /l-4/ that form the basis of the Mises principle are of the form 

$(c- us)de>U, $ode>O, $ edo,<O, @e- e#) da < 0 (1.3) 
0 e 0 

of which the first was proposed in /2/, the second in /3/, the third in /4/, and the fourth 
in /l/. 
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Let us prove the existence of relationships 

Beginning with the first one, we have 

fedn=$d(oe) -:bride 
” n 

Evidently 

(1.4) 

(1.5) 

(1.6) 

From (1.5) and (1.6) we obtain 

Thus the Drucker and Hill postulates (the first and third of inequalities (1.3)) are 
equivalent. Let us prove the validity of the second of formulas (1.4). We have 

9;(e-e,‘)do=$d(oe) -fade--e,‘$ido 
e 

Taking into account that e,- = esI'. we obtain 

(1.7) 

From this follows 

$(ell-eBr)do=-$~de 
e 

Thus the postulates of Il'iushin and the postulate stated in /2/ (thesecondand fourth of 
inequalities (1.3)) are equivalent. It is, therefore, possible to say that there are two 
independent postulates, viz. Drucker's and Il'iushin's. Hill's postulate and the one form- 
ulated in /l/ are different forms of the postulates of Drucker and Il'iushin, respectively. 

2. Let us consider the integral inequalities that lead to the Onsager maximumprinciple. 
We assume the existence of the dissipative function 

(Tell -- D (cl’. e, y,) (2.1) 

where & de/ dt :m &’ i E” is the rate of strain and x are some work hardening parameters. We 
assume that the dissipative function (2.1) is homogeneous and of first order with respect to 
the component a@. 

We introduce the Onsager principle of maximum dissipation in the form proposed by Ziegler 

/I/ 
(GP - E*I’) u > 0 (2.2) 

where Ebb is the possible rate of plastic deformation permitted by the specified dissipative 
function 

zi (E”, e. x) > D (e*“, e, xf (2.3) 

From (2.1)-(2.31 follows the associated law of loading 

(J --m 8Dl%e~’ (2.4) 

Formulas (2.1) and (2.4) completely determine the properties of a plastic body. As shown in 
/6/, (2.1) and (2.4) imply the existence of the function of loading and of the associatedflow 
law 

(2.5) 

For simplicity, we shall consider the case of smooth loading functions; extension of results 
to piecewise smooth functions does not present any fundamental difficulties. 

Let us consider any possible increment 6e*" at point A (Fig.1). Since the dissipative 
function is homogeneous with respect to E”, the inequality (2.3) may be represented in the 
form 

D (6e” e x) > D (6e*“, e, x) I t (2.6) 

A certain level of the dissipative function D (tie”, e,x) =- COIIS~ which corresponds to actual 
plastic deformation increment 6e' is shown in Fig.3, together with possible plastic deform- 
ation increments 6eSY. 

Let us assume that segment AA, (Fig.11 is fairly small and restrict the analysis to 
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quantities of the first order of smallness. We have 

$ ode=o.,W (2.7) 

Actually, the work of stresses over elastic deformations over the closed cycle of stresses is 

zero, and the plastic deformation increment is nonzero only at point A. 

By definition 
e* = e" + e*P , de* = de’ + de*” (2.8) 

where the elastic part of deformation is related to stresses by Hooke's law. The increment 

he*' can have any value within the constraint imposed by (2.6). For the considered loading 

path (Fig.1) we obtain similarly to (2.7) 

$crde*=cASe*P (2.9) 
C 

Subtracting expression (2.9) from (2.7) we obtain 

$o(de-de*)--(J.~(de7’-6e*p) (2.10) 
(I 

Postulating the inequality 

$o(de-de*)>0 
0 

(2.11) 

we obtain in conformity with (2.10), as a corollary, the Onsager principle accurate apart from 
the notation. 

In conformity with (1.5), (1.6), and (2.7) we have 

(2.12) 

In the course of its passage over the stress cycle the component e*" acquaires any increments 

6e*" that satisy the constraint (2.6). Similarly to (2.12) we have 

$e*do=(oll-n.q)GPP (2.13) 
(r 

Substracting (2.13) from (2.12) we obtain 

$(e-- e*) do = (UB - u.4) (6eP - 6e*P) (2.14) 
0 

If we set IJs = 0 , i.e. introducing the loading not at some initial state of stress under 

the loading surface, but at the zero state of stress from (2.13) we then obtain 

f(e- e*) dn = - u 4 (he” - 6e*“) (2.15) 

Stipulating the inequality 

p(?-e*)dcr<O (2.16) 

and bearing in mind that the loading cycle begins and ends in the unstressed state, we obtain, 

as a corollary, the Onsager principle. 

Let us consider cycles that are closed with respect to deformations. We shall investig- 

ate, besides the cycle closed with respect to actual deformations, the cycle closed with 

respect to possible deformations e*. In Fig.2 such a cycle is represented by 11.4.1 ,ABD on 
whose segment RA plastic deformations do not develop and, consequently, the properties of 
this segment are arbitrary. Some plastic deformation increments 6e*" correspond to the 

loading on segment .4.4,, and it is then necessary to move to point D at which the increment 

of elastic deformations compensates increment Ae*l'. We denote the respective increment of 

elastic deformations by Aele which obviously corresponds to the stress increment Au, = CT" - 

(TB. Thus 
c%*~ -t Ae," = 0. 4e: = --6e*O (2.17) 

Integration over the closed cycle with respect to possible deformations will be denoted by 
the subscript e*. Since no plastic deformations appear under the loading surface, hence it 

is possible to assume without loss of generality thatthepaths AC and AD pass through point 
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B. Then 

(2.18) 

Let us consider the integral 

$=u&+de+'~ode (2.19) 
* 0 B 

Elastic deformation occurs on section BC. Assuming the quantities 6el' = -Ae” to be fairly 

small, we obtain 

which is accurate to first order of smallness. 

From (2.19), in conformity with (2.7) and (2.20), we have 

Similarly we have 

u de = osAe” = - u&F (2.20) 

~ode=(a,--_B)iW 
e 

+sde*=(oA-oB)8e*P 
e’ 

Subtracting (2.22) from (2.21) we obtain 

~ude-~ude*=(a_.,-us)(8ep-8e*P) 
e e* 

If us = 0, then in conformity with (2.23) the inequality 

(2.21) 

(2.22) 

(2.23) 

@ode-fode*>C 
e 

(2.24) 

yields the Onsager principle (2.2). 
Thus, when the loading cycle beings at the initial unstressed state, the integral in- 

equality (2.24) yields, as a corollary, the Onsager principle. Let us now consider the in- 

tegral 
$edo=$d(ae) +de 
e * e (2.25) 

Using the reciprocity theorem, in accordance with (1.7), we obtain 

$d(ue)=ea'Au= usAe'= - usBe= (2.26) 

In conformity with (2.26) and (2.21) we reduce (2.25) to the form ’ 

$edu=--*Se" (2.27) 

and in a similar manner obtain 

$.e*du= -uA6e*P 
e* 

Subtracting (2.28) from (2.27) we obtain 

(2.28) 

$edu-$ e*du=. - u~(?ie"-?~e*~) (2.29) 

e c* 

By postulating the inequality 

$edu-$e*du<O (2.30) 
e e* 

we obtain, as a corollary, the Onsager principle for any loading cycles that are closed with 

respect to strains. Let us show that (2.16) and (2.24) are particular cases of (2.11) and 

(2.30), respectively. Indeed 

$u(de-de*) +Sf;(e-e*)du=$d(ue)-$d(uP) 

ude*l$edu-$e*d~=~d(ue)-$d(ue*) 
e e= e 

(2.31) 
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Since inequalities (2.16) and (2.24) yield the Onsager principle only for loading cycles 

beginning at the initially unstressed state, formulas (2.31) are to be used for similar cycles. 

In that case the loading and deformation cycles also end in zero, and relations (2.31) are 

identically zero. 
Thus the inequalities (2.16) and (2.24) represent other forms of postulates (2.11) and 

(2.30) for loading cycles beginning at the initially unstressed state. The two postulates 

(2.11) and (2.30) which yield the Onsager principle when the loading cycles being at any stres- 

sed state under the loading surface, are independent. Let us present a symmetric summary of 

results. The Mises principle 

(c - (IB) &’ > 0 

is obtained from postulates 

$(c- $(e--eBe)dc<O c~)de>O, 
a e 

and the Onsager principle 

(EP - &*p) u > 0 

is derived from postulates 

$u(de-de*)>O, $edu-$e*do<O 
(I 1 

Note that in our analysis we used only stresses 0 and strains e. The integrands are 

of the form ode and da, integration is carried out over closed stress and strain cycles, 

and all four possible combinations of integrals and integrands are investigated. The mechanism 

of plasticity and elasticity is not specified, except that ee and ep are, respectively, 

the reversible and residual deformations. Specific determination of stresses and strains is 

not used; it is necessary that condition (2.1) is satisfied besides (1.1). 

3. Let us consider th? basic inequalities of the theory of plasticity with an accuracy 

up to second order of smallness. 

The Drucker inequality (the first of inequalities (1.3)) is obviously of the form 

$(c- ( 
uD)de= cs~-ocrl,+$~6a 6eP>0 

1 
(3.1) 

0 

Let us consider the Il'iushin inequality (the second of (1.3)) 

If A = B (Fig.4), (3.1) and (3.2) reduce, respectively, to the inequalities 

6&e" ‘& 0 (3.3) 

6&e" + AuAe'~ > 0, 6e7' :- Ae" = 0 (3.4) 

The Hill inequality (the third of (1.3)) obviously reduces to (3.3), and the fourth of inequal- 

ities (1.3) to (3.4). 
A material that satisfies condition (3.3) is usually called stable. The dependence u-e 

for uniaxial tension is shown in Fig.5, where point A corresponds to the yield stress. 
Since in uniaxial tension 6eP > 0, hence in conformity with (3.3) ho>, 0. The rela- 

tion u-e /between u and 

curve (AB in Fig.5). 
e / is represented in that case by a monotonically increasing 

We define the dependence 60 - 6e" (relation between 6u and 6e" 1 by 

60 = E,GeP 

where E, is the plasticity modulus. 
Condition (3.4) for uniaxial tension is of the form 

(3.5) 

60 > Au = EAe' = -EGeP (3.6) 

where E is the elasticity modulus for such tension. From (3.5) and (3.6) we have E, > -E. 
Consequently, the curve of c-e has in this case a monotonically decreasing section 

in Fig.S), which means the behavior of the material may be unstable. 
(A& 

If we set E = tga, 
then in conformity with (3.6) the slope of /the curve representing/ the section of unstable 
behavior of the material cannot be less than-U(Fig.5).Condition(3.4)evidentlycomprisescondit- 
ion(3_3)and,thus,defines a wider class of materials. For instance, the behavior of a material 
in the plastic region may be defined by the curve AB, in Fig.5. Nevertheless the Mises 
principle and consequently, the associated law of plastic flow are valid for that wider class 
of materials. 
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Fig.4 Fig.5 Fig.6 

Let us consider the corollaries of inequalities (3.3) and (3.4) in the general case of 

stressed state. Note that (3.3) does not directly imply either the nonconcavity of the load- 

ing surface or the associated flow law. It is possible to construct a model of a plastic 

body whose properties conform to Fig.6. The plastic strain increment is nonorthogonal to the 

loading surface and directed along segment MN. The straight line mn is orthogonal to 
MN and the straight line mlnl is tangent to the loading surface at point M. According 
to (3.3) the plastic strain increment occurs when vector 6~ issuing from point M lies with- 

in sectors mMN or nMN. A stress increment within sector lltMl$ does not produce a plastic 
strain increase, but a displacement of the loading surface occurs in the neighborhood of point 

M; there is only a shift of the yield stress. Increment 60 within segment llMIl* cor- 

responds to unstable plastic deformation. The loading surface shifts in the neighborhood of 

the point M inward of the loading surface previous state. 

Such a modelisentirely admissible when only inequality (3.3) is taken as the basis.Its 

validity is vitiated by corollaries of the Mises principle. 

The associated flow law can be obtained from (3.3) if one assumes that the increment 60 

which produces plastic deformation cannot be directed inward from the loading surface. This 

is equivalent to the assumption that the material is stable. 

Condition (3.3) is actually the condition of stability of the material if it conforms to 

the Mises (or Onsager) postulate whose corollaries are the nonconcavity of the loading surface 

and the associated flow law. Condition (3.3), as well as (3.4), determines the possible 

directions of the increment bo which produces plastic deformation increments. Condition 
(3.4) admits increments of plastic deformations for inward motion from the loading surface. 

We formulate the generalized inequality as 

(1--)~(0---(~~)de--~((e--~n')dn~~, a=const (3.7) 
[T e 

The equivalent inequality is 

il~~nde-(l-+xQO, a=const (3.8) 
0 

When n -= 0, formulas (3.7) and (3.8) evidently reduce to the first and the third of inequalit- 

ies (1.3), 'respectively. When a == 1 formulas (3.7) and (3.8) reduce to the fourth and second 

of inequalities (1.3). In conformity with (3-l), (3.2) and (1.4), formulas (3.7) and (3.8) 

are, within higher order smallness, of the form 

(oa -0,)&J" -1. + (6o&?' + aAoAe”) > 0 (3.9) 

Setting A = R (Fig.4) we obtain from (3.9) the generalized condition of plastic loading 

6&e' -t- aAo9e" > 0, 6ei’ + Ae' = 0 (3.10) 

If a) 0, 6&e* may become negative, plastic deformations can appear when 60 is direct- 

ed inward from the loading surface, and the behavior of the material can be unstable. 

If a (0, Go?ieP may assume limited positive values. For uniaxial tension from (3.10) 

we obtain 
fro > E,08eP, E,” = -aE, a < 0 (3.11) 

In conformity with (3.11) and (3.5), the modulus E, cannot be lower than the entirely determ- 

inate quantity E,". 
Let us consider inequalities (2.11) and (2.32) within quantities of second order of small- 

ness. Similarly to (3.1) and (3.2) we obtain 

$o(de-de*)= (Jo (8eP - 6e*P) + $60 (6eP - 6e*p) Zb 0 
(3.12) 

&do-+ e*dc =cA(&+- &*P)+-~((do&~ -I- AaAe”- Ao6e*P- A.cslAe,‘)-GO 

# e* 
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Unlike in the previously considered cases, it is not possible to get rid of the first term 
in the right-hand sides of both equalities (3.12), and the second terms of these do not es- 
sentially affect inequalities (3.12). 

Let us make a few remarks on the principle of maximum of dissipation rate. Onsager had 
formulated the principle /5/ according to which actual deformation rates EP maximize the 
expression in our notation 

(3.13) 

Substituting in (3.13) the quantity EP for S*P we find that the expression 011p= D(sp) for 
the dissipation rate is maximized. 

The Onsager principle of maximum dissipation rate can, obviously, be formulated as fol- 
lows: actual deformation rates maximize the expression 

a(e*p - me), O<n<l (3.14) 

The alternative expression for m=l formulated by Ziegler /5/ is of the form 

0(EP - e'P)>O (3.15) 

Consequently the Onsager principle of maximum dissipation rate can be expressed in the form 
(3.14) or (3.15). 
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